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Abstract

This paper reviews the concept of Metagame and discusses the implementation

ofMETAGAMER, a program which plays Metagame in the class of symmetric chess-

like games, which includes chess, Chinese-chess, checkers, draughts, and Shogi.

The program takes as input the rules of a specific game and analyses those rules

to construct for that game an efficient representation and an evaluation function,

both for use with a generic search engine. The strategic analysis performed by the

program relates a set of general knowledge sources to the details of the particular

game. Among other properties, this analysis determines the relative value of

the different pieces in a given game. Although METAGAMER does not learn from

experience, the values resulting from its analysis are qualitatively similar to

values used by experts on known games, and are sufficient to produce competitive

performance the first time the program actually plays each game it is given. This

appears to be the first program to have derived useful piece values directly from

analysis of the rules of different games.

1 The Problem

Virtually all past research in computer game-playing has attempted to develop com-

puter programs which could play existing games at a reasonable standard. While

some researchers consider the development of a game-specific expert for some game

•Parts of this work have been supported by RIACS, NASA Ames Research Center [FIA], the Amer-
ican Friends of Cambridge University, Trinity College (Cambridge), and the Cambridge University

Computer Laboratory.
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to be a sufficient end in itself, many scientists in AI are motivated by a desire for

generality. Their emphasis is not on achieving strong performance on a particular

game, but rather on understanding the general ability to produce such strength on a

wider variety of games (or problems in general). Hence additional evaluation criteria

are typically placed on the playing programs beyond mere performance in competi-

tion: criteria intended to ensure that methods used to achieve strength on a specific

game will transfer also to new games. Such criteria include the use of learning and

planning, and the ability to play more than one game.

1.1 Bias when using Existing Games

However, even this generality-oriented research is subject to a potential methodolog-

ical bias. As the human researchers know at the time of program-development which

specific game or games the program will be tested on, it is possible that they import

the results of their own understanding of the game directly into their program. In

this case, it becomes difficult to determine whether the subsequent performance of

the program is due to the general theory it implements, or merely to the insightful ob-

servations of its developer about the characteristics necessary for strong performance

on this particular game. An instance of this problem is the fixed representation trick

[Flann and Dietterich, 1989], in which many developers of learning systems spend

much of their time finding a representation of the game which will allow their systems

to learn how to play it well.

This problem is seen more easily when computer game-playing with known games

is viewed schematically, as in Figure 1. Here, the human researcher or programmer

is aware of the rules and specific knowledge for the game to be programmed, as well

as the resource bounds within which the program must play. Given this information,

the human then constructs a playing program to play that game (or at least an

acceptable encoding of the rules if the program is already fairly general, like HOYLE

[Epstein, 1989b]). The program then plays in competition, and is modified based on

the outcome of this experience, either by the human, or perhaps by itself in the case

of experience-based learning programs. In all cases, what is significant about this

picture is that the human stands in the centre, and mediates the relation between the

program and the game it plays.

1.2 Metagame

The preceding discussion only serves to emphasize a point commonly acknowledged

in AI: whenever we design a program to solve a set of problems, we build in our own

bias about how the program should go about solving them. However, while we cannot

eliminate bias totally from AI research (or any other for that matter), we can to some

degree control for human bias, and thus eliminate a degree of it.

This motivates the idea of Meta-Game Playing [Pell, 1992a], shown schematically
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Figure 1: Computer Game-Playing with existing games: the human programmer

mediates the relation between the program and the game it plays.

in Figure 2. Rather than designing programs to play an existing game known in

advance, we design programs to play (or themselves produce other programs to play)

new games, from a well-defined class, taking as input only the rules of the games

as output by an automatic game generator. As only the class of games is known in

advance, a degree of human bias is eliminated, and playing programs are required

to perform any game-specific optimisations without human assistance. In contrast

with the discussion on existing games above, the human no longer mediates the

relation between the program and the games it plays, instead she mediates the relation

between the program and the class of games it plays.1

1.3 SCL-Metagame

SCL-Metagame [Pell, 1992b] is a concrete Metagame research problem based around

the class of symmetric chess-like games. The class includes the games of chess,

checkers, noughts and crosses, Chinese-chess, and Shogi. An implemented game

generator produces new games in this class, some of which are objects of interest in

their own right.

1Instead of playing a game, the program now plays a game about game-playing, hence the name
meta-game playing.
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Figure 2: Metagame-playing with new games.

Symmetric Chess-Like Games

Informally, a symmetric chess-like game is a two-player game of perfect information,

in which the two players move pieces along specified directions, across rectangular

boards. Different pieces have different powers of movement, capture, and promotion,

and interact with other pieces based on ownership and piece type. Goals involve

eliminating certain types of pieces (eradicate goals), driving a player out of moves

(stalemate goals), or getting certain pieces to occupy specific squares (arrival goals).

Most importantly, the games are symmetric between the two players, in that all the

rules can be presented from the perspective of one player only, and the differences in

goals and movements are solely determined by the direction from which the different

players view the board.

As an illustration of how chess-like games are defined in this class, Figure 3

presents a grammatical representation of the complete rules for American Checkers

as a symmetric chess-like game.

Game Generation

The goal of game generation, as shown in Figure 4, is to produce a wide variety

of games, all of which fall in the same class of games as described by a grammar.

We also want to be able to modify the distribution of games generated by changing

parameters, often in the form of probabilities. Finally, the combination of grammar

and probabilities may not be enough to constrain the class according to our needs, in

which case the generator should be able to handle a set of constraints.

The game generator for this class of games is illustrated schematically in Figure 4.
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GAME american _checkers

GOALS stalemate opponent
BOARD_SIZE 8 BY 8

BOARD _TYPE planar
PROMOTE_RANK 8

SETUP man AT {(1, 1) (3, 1) (5, 1) (7, 1) (2, 2) (4, 2)

(6,2) (8,2)(1,3)(3,3)(5,3)(7,3)}
CONSTRAINTS must_capture

DEFINE man

MOVING

MOVEMENT

LEAP

(1, 1) SYMMETRY {side}
END MOVEMENT

END MOVING

CAPTURING

CAPTURE

BY {hop}

TYPE [{opponent} any_piece]
EFFECT remove

MOVEMENT

HOP BEFORE [X = 0]

OVER [X = 1]

AFTER [X = 0]

HOP_OVER [{opponent} any_piece]

(1,1)SYMMETRY {side}

END MOVEMENT

END CAPTURE

END CAPTURING

PROMOTING

PROMOTE_TO king

END PROMOTING

CONSTRAINTS continue_captures

END DEFINE

DEFINE king
MOVING

MOVEMENT

LEAP

(1, 1) SYMMETRY {forward side}
END MOVEMENT

END MOVING

CAPTURING

CAFrURE

BY {hop}

TYPE [{opponent} any_piece]
EFFECT remove

MOVEMENT

HOP BEFORE [X = 0]

OVER IX = 1]

AFTER [X = 0]

HOP_OVER [{opponent} any_piece]

_1, 1) SYMMETRY {forward side}
END MOVEMENT

END CAPTURE

END CAFrURING

CONSTRAINTS continue_captures
END DEFINE

END GAME.

Figure 3: Definition of American Checkers as a symmetric chess-like game.
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The generator begins by generating a board and a set of piece names, and then

Generator

Figure 4: Components of a Game Generator.

generates goals and definitions for the pieces subject to the grammar and constraints,

making choices using probabilities (parameters) attached to each choice-point in the

grammar. Details of the generator, its parameters, and example generated games are

provided in [Pell, 1992b].

With the provision of the class definition and generator (as well as various com-

munications protocols to enable communication between programs, also discussed

in [Pell, 1992b]), the problem of Metagame in symmetric chess-like games is thus

fully defined. The rest of this paper is organised as follows. Section 2 discusses

the challenge of representing knowledge for unknown games and the construction of

METAGAMER. Section 3 discusses the analysis performed by METAGAMER to determine

piece values for the games of chess and checkers, when presented with only the rules

of those games, and compares this to previous work on automatic methods for deter-

mining feature values in games. Finally, Section 4 presents the results of preliminary

evaluations of METAGAMER on the games of chess and checkers.

2 Constructing a Metagame-player

While a main intention of Metagame is to serve as a test-bed for learning and planning

systems, a logical first approach to constructing a Metagame-player is to push the lim-

its of what can be done with standard game-tree search and knowledge-engineering.

At the very least such an engineered player could serve as a baseline against which

to measure the performance of more general systems.
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2.1 Search Engine

To this end, the search engine used incorporates many standard search techniques

from the game-playing literature (see [Levy and Newborn, 1991]). It is based on the

minimax algorithm with alpha-beta pruning, iterative deepening, and the principal

continuation heuristic. More details of the Metagame search engine are given in [Pell,
1993b].

2.2 Automated Efficiency Optimisation

This powerful search engine should allow a playing program to search deeply. How-

ever, search speed is linked to the speed with which the primitive search operations of

move-generation and goal detection can be performed. For a game-specific program,

these issues can be easily hand-engineered, but for a program which is to play an en-

tire class of games, the excess overhead of such generality initially caused the search

to be unbearably slow. This problem was overcome by using a knowledge-compilation

approach. We represent the semantics of the class of games in an extremely general

but inefficient manner, and after receiving the rules of a given game the program

automatically partially evaluates the general theory with respect to it, thus compiling

away both unnecessary conditionality and the overhead of interpretation. This is

discussed in detail in [Pell, 1993a].

2.3 Meta-Level Evaluation Function

With the search engine in place, using the optimised primitive operations, we have a

program which can search as deeply as resources permit, in any position in any game

in this class. The remaining task is to develop an evaluation function which will be

useful across many known and unknown games.

Following the approach used in HOYLE [Epstein, 1989b], we view each feature as

an advisor, which encapsulates a piece of advice about why some aspect of a position

may be favourable or unfavourable to one of the players. But as the class of games to

be played is different from that played by Epstein's HOYLE, we had to construct our

advisors mostly from scratch.

In terms of the representation of the advisors, we follow an approach similar to

that used in Zenith [Fawcett and Utgoff, 1992], in which each advisor is defined

by a non-deterministic rule for assigning additional value to a position. The total

contribution (value) of the advisor is the sum of the values for each solution of the

rule. This method of representation is extremely general and flexible, and facilitates

the entry and modification of knowledge sources. We have also tried when possible

to derive advisors manually following the transformations used by Zenith [Fawcett

and Utgoff, 1992] and CINDI [Callan and Utgoff, 1991], two systems designed for

automatic feature generation.



2.4 Advisors

This section briefly explains the advisors currently implemented for METAGAMER.

It should be noted that this set is not final, and there are several important general

heuristics which are not yet incorporated (such as distance and control [Snyder, 1993]).

The advisors can be categorised into four groups, based on the general concept

from which they derive.

Mobility Advisors

The first group is concerned with different indicators of mobility. These advisors

were inspired in part by [Church and Church, 1979] and [Botvinnik, 1970], and by

generalising features used for game-specific programs [Pell, 1993b].

• dynamic-mobility :counts the number of squares to which a piece can move directly

from its current square on the current board, using a moving power?

• stat ic-,,obility:a static version of immediate-mobility, this counts the number of

squares to which a piece could move directly from its current square on an otherwise

empty board, using a moving power.

• capturing-mobility:counts the number of captures each piece could make in the

current position, regardless of the usefulness of the capture. It does not even distin-

guish whether the victim is a friendly or enemy piece. There is no static version of

this advisor. For future work, one way to approximate the potential capturing ability

of a piece might be to play random games and count the pieces attacked by each piece

in each position.

• eventual-mobility:measures the total value of all squares to which a piece could

move eventually from its current square on an otherwise empty board, using a moving

power. The value of each square decreases (by a parameter-controlled function) with

the number of moves required for the piece to get there. Thus while a bishop has 32

eventual moves and a knight has 64 from any square, the bishop can reach most of its

squares more quickly, a fact captured by this advisor.

Threats and Capturing

The second group of advisors deals with capturing interactions (in general, threats

and conditions enabling threats):

• local-threat : for each target piece which a piece could capture in the current posi-

tion, this measures the value of executing this threat (based on the other advisors),

but reduces this value based on which player is to move. Thus a threat in a position

where a player is to move is almost as valuable for that player as the value derived

from executing it (i.e. he can capture if he likes), but if it is the opponent's move the

_Recall from Section 1.3 that pieces in this class may move and capture in different ways.
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threat is less valuable, as it is less likely to happen. Thus attacking an enemy piece

while leaving one's own piece attacked (if the pieces are of equal value) is a losing

proposition, but if the threatened enemy piece is worth much more this may be a good

idea. The value of these threats are also augmented based on the effect of the capture.

• potent-threat :this extracts from the local-threat analysis just those threats which

are obviously potent. A threat is potent for the player on move if the target is either

undefended or more valuable (based on the other advisors) than the threatening piece.

A threat is potent for the non-moving player only if the attacker is less valuable than

the target and the moving-player does not already have a potent threat against the
attacker.

• gl ob al-t hreat : The two threat advisors above exist in both local and global versions.

The local version credits a player for each threat she has in a position, while the global

version credits the player with only the maximum of those local threat values.

• possess : In a position where a player has a piece in-hand, the player is awarded

the dynamic value (using the local advisors) that the piece would receive, averaged

over all empty board squares. Note that if the maximum value were used instead of

the average, a program searching one-ply would never choose to place a piece on the

board once possessed. 3

Goals and Step Functions

The third group of advisors is concerned with goals and regressed goals for this class

of games.

• vital:this measures dynamic progress by both players on their goals to eradicate

some set of piece types. As a given goal becomes closer to achievement, exponentially

more points are awarded to that player. In addition, if the number of such remaining

pieces is below some threshold, the remaining pieces are considered vital, in which

case any potential threats against them automatically become potent.

• arrival-distance :this is a decreasing function of the abstract number of moves it

would take a piece to move (i.e. without capturing) from its current square to a goal

destination on an otherwise empty board, where this abstract number is based on

the minimum distance to the destination plus the cost/difficulty of clearing the path.

This applies only to destinations for which the game has a defined arrival-goal for a

piece-type consistent with the piece, and succeeds separately for each way in which
this is true.

• promote-distance:for each target-piece that a piece could promote into (by the

player's choice), this measures the value of achieving this promotion (using the other

advisors), but reduces this value based on the difficulty of achieving this promotion,

as discussed for arrival-distance above. The result is the maximum net value (to a

3This analysis would have to be improved substantially to capture the complexities of possessed

pieces in games like Shogi.
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player) of the discounted promotion options, or the minimum value if the opponent

gets to promote the piece instead. 4

• init-promote:This applies in a position where a player is about to promote the

opponent's piece (on some square) before making a normal move. For each promoting-

option defined for that piece, this calculates the value that option would have on the

given square in the current position. The value returned is the maximum of the values

of the options, from the perspective of the promoting player (and thus the minimum

from the perspective of the player who owned the piece originally).

Material Value

The final group of advisors are used for assigning a fixed material value to each type

of piece, which is later awarded to a player for each piece of that type he owns in a

given position. This value is a weighted sum of the values returned by the advisors

listed in this section, and does not depend on the position of the piece or of the other

pieces on the board. Note that white king and black king are viewed as different types

of pieces during the computations below. 5

• m_x-stat it-mob:The maximum static-mobility for this piece over all board squares.

• avg- st at ic-mob :The average static-mobility for this piece over all board squares.

• max-eventual-mob:The maximum eventual-mobility for this piece over all board

squares.

• avg-eventual-mob :The average eventual-mobility for this piece over all board squares.

• eradicate :Awards 1 point for each opponent goal to eradicate pieces which match

this type, and minus one point for each player goal to eradicate our own piece matching

this type.

• victims :Awards I point for each type of piece this piece has a power to capture (i.e.

the number of pieces matching one of its capture-types). A bonus is provided for the

effects of each capture, as discussed for the local-threat advisor above. It would be

interesting to have a dynamic version of this which gave preference to pieces which

could capture other pieces actually present in a given position. 6

• immunity:Awards i point for each type of enemy piece that cannot capture this piece.

• giveaway :Awards i point for each type of friendly piece that can capture this piece.

4If we take the sum instead of the maximum here, a piece with many promotion options could be

more valuable than its combined options, and thus it would never be desirable to promote it. For

example, a pawn on the seventh rank would sit there forever enjoying all its options, but never caching
them in.

5Thus if a piece gets one point for each piece it can possibly capture, and there are 5 distinct piece

names, it is possible to score 10 points if the piece can capture all pieces.
6A more sophisticated version of this feature, not fully implemented yet, takes into account the

value of each victim, as determined by other static advisors.
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• st alemat e :This views the goal to stalemate a player as if it were a goal to eradicate

all of the player's pieces, and performs the same computation as eradicate above.

• arrive :Awards a piece 1 point if the player has an arrival goal predicated on that

type of piece. It awards 1/n points if the piece can promote to an arrival-goal piece in

n promotions. Values are negated for opponent arrival goals. 7

• promote:This is computed in a separate pass after allthe other material values. It

awards a piece a fraction of the material value (computed so far) of each piece it can

promote into. This advisor isnot fullyimplemented yet,and was not used in the work

discussed in this paper.

Section 3 provides concrete examples of the application of these advisors to the

rules different games discussed in this thesis.

2.5 Static Analysis Tables

Most of these advisors draw on information which would be extremely slow to com-

pute dynamically at each position to be evaluated. We overcome this problem in a

similar manner as with the automated efficiency optimisation for the primitive search

components, by having the program compile a set of tables after it receives the rules

of each game, and then use those tables thereafter. Another advantage of this game-

specialisation beyond efficiency is that after receiving the game rules, the program

can take advantage of the rules to fold some of the goal tests directly into the tables.

As an example, one of the most frequently used tables is the Constrained-Transit i on

Table. This table (used by all the static mobility advisors) records for each piece and

square, the other squares the piece could move to directly on an otherwise empty

board. However, it excludes all transitions from this set which can easily be shown

either to be impossible or immediately losing for the player moving that piece. A

transition is impossible if the starting square is one in which an arrival goal would

already have been achieved when the piece first arrived at the square. A transition is

immediately losing if the player would necessarily lose the game whenever his piece

arrives on the destination square. While these considerations do not obviously apply

to any known games, they prove highly relevant in generated games. Further details

on static analysis tables are provided in [Pell, 1993b].

2.6 Weights for Advisors

The last major issue concerning the construction of the strategic evaluation function

involves assigning weights to each advisor, or more generally, developing a function

for mediation among advisors [Epstein, 1989a]. While this issue is already difficult

in the case of existing games, it is correspondingly more difficult when we move to

7The net effect of this is that pieces which help a player to achieve arrival goals receive positive

points, and those which help the opponent receive negative points.
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unknown games, where we are not even assured of the presence of a strong opponent

to learn from. However, by the construction of some of the advisors, we do have one

significant constraint on their possible values. For advisors which anticipate goal-

achievement (such as promote-distance and the threat advisors), it would seem that

their weight should always be at most 1. The reason is that the value they return is

some fraction of the value which would be derived if the goal they anticipate were to

be achieved. If such an advisor were weighted double, for example, the value of the

threat would be greater than the anticipated value of its execution, and the program

would not in general choose to execute its threats.

Beyond the constraint on such advisors, this issue of weight assignment for Meta-

game is an open problem. One idea for future research would be to apply temporal-

difference learning and self-play [Tesauro, 1993] to this problem. It would be interest-

ing to investigate whether the "knowledge-free" approach which was so successful in

learning backgammon also transfers to these different games, or whether it depends

for its success on properties specific to backgammon. In the meantime, we have been

using METAGAMER with all weights set to 1. s

3 Examples of Material Analysis

One important aspect of METAGAMER'S game analysis, which was discussed in Sec-

tion 2.4, is concerned with determining relative values for each type of piece in a

given game. This type of analysis is called material analysis, and the resulting values

are called material values or static piece values. This section illustrates the results of

METAGAMER'S material analysis when applied to chess and checkers. In both cases,

METAGAMER took as input only the rules of the games.

In conducting this material analysis, METAGAMER used the material advisors shown

in Table 1, all with equal weight of one point each.

3.1 Checkers

Table 2 lists material values determined by METAGAMER for the game of checkers,

given only the encoding of the rules as presented in Figure 3. In the table, K stands

for king, and M stands for man.

METAGAMER concludes that a king is worth almost two men. According to expert

knowledge, 9 this is a gross underestimate of the value of a man. The reason that

men are undervalued here is that METAGAMER does not yet consider the static value

of a piece based on its possibility to promote into other pieces (see Section 2.4). When

sit should be noted that this is not the same as setting all piece values for a given game to equal

value. The general knowledge still imposes constraints on the relative values of individual pieces in a

game. For example, even a random setting of weights will cause METAGAMER to value queens above

rooks [Pell, 1993b].

9I am thankful to Nick Flann for serving as a checkers expert.
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Advisor Weight

dynamic-mobility 1

capture-mobility 1

global-threat 1

eventual-mobility 1

promote-distance 1
eradicate 1

vital 1

material 1

victims 1

max-static-mob 1

max-eventual-mob 1

eradicate 1

stalemate 1

arrive 1

giveaway 1

immunity 1

Table 1: Advisor weights for material analysis examples.

actually playing a game, METAGAMER does take this into consideration, based on the

dynamic promote-distance advisor.

3.2 Chess

Table 3 lists material values determined by METAGAMER for the game of chess, given

only an encoding of the rules similar to that for checkers [Pell, 1993b]. In the table,

the names of the pieces are just the first letters of the standard piece names, except

that N refers to a knight.

As discussed for checkers above, pawns are here undervalued because METAGAMER

does not consider their potential to promote into queens, rooks, bishops, or knights.

According to its present analysis, a pawn has increasingly less eventual-mobility as

it gets closer to the promotion rank. Beyond this, the relative value of the pieces is

surprisingly close to the values used in conventional chess programs, given that the

analysis was so simplistic.

3.3 Discussion

Despite its simplicity, the analysis produced useful piece values for a wide variety

of games, which agree qualitatively with the assessment of experts on some of these

13



Material Analysis: checkers

Piece

Advisor K I M

max-static-mob 4 2

max-eventual-mob 6.94 3.72

avg-static-mob 3.06 1.53

avg-eventual-mob 5.19 2.64

eradicate 1 1

victims 2 2

immunity 0 0

giveaway 0 0

stalemate 1 1

arrive 0 0

Total

Table 2: Material value analysis for checkers.

games. This illustrates that the general knowledge encoded in METAGAMER'S advisors

and analysis methods is an appropriate generalisation of game-specific knowledge.

This appears to be the first instance of a game-playing program automatically deriv-

ing material values based on active analysis when given only the rules of different

games. It also appears to be the first instance of a program capable of deriving useful

piece values for games unknown to the developer of the program [Pell, 1993b]. The fol-

lowing sections compare METAGAMER to previous work with respect to determination

of feature values.

Expected Outcome

Abramson [Abramson, 1990] developed a technique for determining feature values

based on predicting the expected-outcome of a position in which particular features

(not only piece values) were present. The expected-outcome of a position is the frac-

tion of games a player expects to win from a position if the rest of the game after that

position were played randomly. He suggested that this method was an indirect means

of measuring the mobility afforded by certain pieces. The method is statistical, com-

putationally intensive, and requires playing out many thousands of games. On the

other hand, the analysis performed by METAGAMER is a direct means of determining

piece values, which follows from the application of general principles to the rules of

a game. It took METAGAMER under one minute to derive piece values for each of the

games discussed in this section, and it conducted the analysis without playing out

even a single contest.
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Material Analysis: chess

Advisor

max-static

max-eventual

avg-static

avg-eventual

eradicate

victims

immunity

giveaway

stalemate

arrive

Total

Piece

B IK IN IP

13 8 8 1

12 12.9 14.8 1.99

8.75 6.56 5.25 0.875

10.9 9.65 11.8 1.75

0 1 0 0

6 6 6 6

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

12.6

IQ JR
27 14

23.5 20.2

22.8 14

22.4 20.2

0 0

6 6

0 0

0 0

1 1

0 0

Table 3: Material value analysis for chess.

Automatic Feature Generation

There has recently been much progress in developing programs which generate fea-

tures automatically from the rules of games [de Grey, 1985; Callan and Utgoff, 1991;

Fawcett and Utgoff, 1992]. When applied to chess such programs produce features

which count the number of chess pieces of each type, and when applied to Othello

they produce features which measure different aspects of positions which are corre-

lated with mobility. The methods operate on any problems encoded in an extended

logical representation, and are more general than the methods currently used by

METAGAMER. However, these methods do not generate the values of these features,

and instead serve as input to systems which may learn their weights from experience

or through observation of expert problem-solving. While METAGAMER'S analysis is

specialised to the class of symmetric chess-like games, and thus less general than

these other methods, it produces piece values which are immediately useful, even for

a program which does not perform any learning.

Evaluation Function Learning

There has been much work on learning feature values by experience or observation

(e.g. [Samuels, 1967; Lee and Mahajan, 1988; Levinson and Snyder, 1991; Callan et al.,

1991; Tunstall-Pedoe, 1991; van Tiggelen, 1991]). These are all examples of passive

analysis [Pell, 1993b], and are not of use to a program until it has had significant

experience with strong players.
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Hoyle

HOYLE [Epstein, 1989b] is a program, similar in spirit to METAGAMER, in which general

knowledge is encapsulated using the metaphor of advisors. HOYLE has an advisor

responsible for guiding the program into positions in which it has high mobility.

However, HOYLE does not analyse the rules of the games it plays, and instead uses the

naive notion of immediate-mobility as the number of moves available to a player in a

particular position. The power of material values is that they abstract away from the

mobility a piece has in a particular position, and characterise the potential options

and goals which are furthered by the existence of each type of piece, whether or not

these options are realised in a particular position. As HOYLE does not perform any

analysis of the rules or construct analysis tables as does METAGAMER, it is unable to

benefit from this important source of power.

4 Preliminary Results

The experimental evaluation of METAGAMER has only recently begun, but the prelim-

inary results are exciting. To assess the strength of the program on known games,

we are comparing it against specialised game-playing programs in the games of chess

and checkers.

4.1 Checkers

We are comparing the performance of METAGAMER in checkers by playing it against

Chinook [Schaeffer et al., 1991]. Chinook is the world's strongest computer checkers

player, and the second strongest checkers player in general. As it is a highly optimised

and specialised program, it is not surprising that METAGAMER always loses to it (on

checkers, of course!). However, to get a baseline for METAGAMER'S performance relative

to other possible programs when playing against Chinook, 1° we have evaluated the

programs when given various handicaps (number of men taken from Chinook at the

start of the game).

The preliminary results from the experiments are that METAGAMER is around even

to Chinook, when given a handicap of one man. This is compared to a deep-searching

greedy material program which requires a handicap of 4 men, and a random player,

which requires a handicap of 8. In fact, in the 1-man handicap positions, METAGAMER

generally achieves what is technically a winning position, but it is unable to win

against Chinook's defensive strategy of hiding in the double-corner.

On observation of METAGAMER'S play of checkers, it was interesting to see that

METAGAMER "re-discovered" the checkers strategy of not moving its back men until

X°In our experiments, Chinook played on its easiest level. It also played without access to its opening

book or endgame database, although it is unlikely that the experimental results would have been much

altered had it been using them.
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late in the game. Itturned out that this strategy emerged from the promote-distance

advisor, operating defencively instead ofin its"intended" offensive function. In effect,

METAGAMER realized from more general principles that by moving its back men, it

made the promotion square more accessible to the opponent, thus increasing the

opponent's value, and decreasing its own. Of course, as discussed in Section 1.1,we

cannot make an unbiased claim about originality of the program, as this game was

known to METAGAMER'S designer beforehand, but this development can stillbe taken

as an indication of the generality of the advisors across a variety of games.

4.2 Chess

In chess, we are playing METAGAMER against GnuChess, a very strong publicly avail-

able chess program, winner of the C Language division of the 1992 Uniform Platform

Chess Competition. GnuChess is vastly superior to METAGAMER (at chess, of course!),

unless it is handicapped severely in time and moderately in material.

The preliminary results from the experiments are that METAGAMER is around even

to GnuChess on its easiest level, 11 when given a handicap of one knight. For pur-

poses of comparison, a version of METAGAMER with only a standard hand-encoded

material evaluation function (queen=9, rook=5, bishop=3.25, knight=3, and pawn=l)

[Botvinnik, 1970; Abramson, 1990] played against METAGAMER with all its advisors

and against the version of GnuChess used above. The result was that the material

program lost every game at knight's handicap against GnuChess, and lost every game

at even material against METAGAMER with all its advisors. This showed that META-

GAMER'S performance was not due to its search abilities, but rather to the knowledge
in its evaluation function.

On observation of METAGAMER'S play of chess, we have seen the program develop

its pieces quickly, place them on active central squares, put pressure on enemy pieces,

make favourable exchanges while avoiding bad ones, and restrict the freedom of

its opponent. In all, it is clear that METAGAMER'S knowledge gives it a reasonable

positional sense and enables it to achieve longer-term strategic goals while searching

only one or two-ply deep. This is actually quite impressive, given that none of the

knowledge encoded in METAGAMER'S advisors or static analyser makes reference to

any properties specific to the game of chessmMETAGAMER worked out its own set

of material values for each of the pieces (see Section 3), and its own concept of the

value of each piece on each square. On the other hand, the most obvious immediate

limitation of METAGAMER revealed in these games is a weakness in tactics caused in

part by an inability to search more deeply within the time constraints, in part by a

lack of quiescence search, and also by the reliance on full-width tree-search. These

are all important areas for future work.

11in the experiments, GnuChess played on level 1 with depth 1. This means it searches 1-ply in
general but can still search deeply in quiescence search. METAGAMER played with one minute per

move, and occasionally searched into the second-ply.
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4.3 New Games

The experiments above allow us to assess the application of the same general encoded

knowledge to two different games. However, the test of METAGAMER'S ability on the

task for which it was designed (i.e. SCL-Metagame) comes when we compare different

programs on a tournament of newly-generated games. The results of such experiments

are encouraging [Pell, 1993b], and will be reported in future work.
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